

How old is the sun? How does the sun shine? These questions are two sides of the same coin, as we shall see.
The rate at which the sun is radiating energy is easily computed by using the measured rate at which energy reaches the earth’s surface and the distance between the earth and the sun. The total energy that the sun has radiated away over its lifetime is approximately the product of the current rate at which energy is being emitted, which is called the solar luminosity, times the age of the sun.
The older the sun is, the greater the total amount of radiated solar energy. The greater the radiated energy, or the larger the age of the sun, the more difficult it is to find an explanation of the source of solar energy.
To better appreciate how difficult it is to find an explanation, let us consider a specific illustration of the enormous rate at which the sun radiates energy. Suppose we put a cubic centimeter of ice outside on a summer day in such a way that all of the sunshine is absorbed by the ice. Even at the great distance between the earth and the sun, sunshine will melt the ice cube in about 40 minutes. Since this would happen anywhere in space at the earth’s distance from the sun, a huge spherical shell of ice centered on the sun and 300 million km (200 million miles) in diameter would be melted at the same time. Or, shrinking the same amount of ice down to the surface of the sun, we can calculate that an area ten thousand times the area of the earth’s surface and about half a kilometer (0.3 mile) thick would also be melted in 40 minutes by the energy pouring out of the sun.
Darwin was so shaken by the power of Kelvin’s analysis and by the authority of his theoretical expertise that in the last editions of On The Origin of the Species he eliminated all mention of specific time scales. He wrote in 1869 to Alfred Russel Wallace, the codiscoverer of natural selection, complaining about Lord Kelvin:
Today we know that Lord Kelvin was wrong and the geologists and evolutionary biologists were right. Radioactive dating of meteorites shows that the sun is 4.6 billion years old.
By April 1938, it was almost as if the scientific stage had been intentionally set for the entry of Hans Bethe, the acknowledged master of nuclear physics. Professor Bethe had just completed a classic set of three papers in which he reviewed and analyzed all that was then known about nuclear physics. These works were known among his colleagues as “Bethe’s bible.” Gamow assembled a small conference of physicists and astrophysicists in Washington, D.C. to discuss the state of knowledge, and the unsolved problems, concerning the internal constitution of the stars.
In the course of the next six months or so, Bethe worked out the basic nuclear processes by which hydrogen is burned (fused) into helium in stellar interiors. Hydrogen is the most abundant constituent of the sun and similar stars, and indeed the most abundant element in the universe.
Bethe described the results of his calculations in a paper entitled “Energy Production in Stars,” which is awesome to read. He authoritatively analyzed the different possibilities for reactions that burn nuclei and selected as most important the two processes that we now believe are responsible for sunshine. One process, the so-called p-p chain, builds helium out of hydrogen and is the dominant energy source in stars like the sun and less massive stars.
Sign in/up with Facebook
Sign in/up with X
Sign in/up with Linkedin
Sign in/up with Google
Sign in/up with Apple
Wouldn't it be a good idea to create a course?